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Abstract: The smart classrooms of the future will use different software, devices and wearables as
an integral part of the learning process. These educational applications generate a large amount
of data from different sources. The area of Multimodal Learning Analytics (MMLA) explores the
affordances of processing these heterogeneous data to understand and improve both learning and
the context where it occurs. However, a review of different MMLA studies highlighted that ad-hoc
and rigid architectures cannot be scaled up to real contexts. In this work, we propose a novel MMLA
architecture that builds on software-defined networks and network function virtualization principles.
We exemplify how this architecture can solve some of the detected challenges to deploy, dismantle
and reconfigure the MMLA applications in a scalable way. Additionally, through some experiments,
we demonstrate the feasibility and performance of our architecture when different classroom devices
are reconfigured with diverse learning tools. These findings and the proposed architecture can be
useful for other researchers in the area of MMLA and educational technologies envisioning the future
of smart classrooms. Future work should aim to deploy this architecture in real educational scenarios
with MMLA applications.

Keywords: smart classrooms; educational technology; multimodal learning analytics; internet of
things; multisensorial networks

1. Introduction

Technology has been transforming education for the last decade. One of the main changes is the
introduction of digital tools that support the learning and teaching practices [1]. Both software
(e.g., smart tutoring systems, learning management systems, educational games, simulations,
or virtual/augmented reality environments) and hardware (e.g., smart whiteboards, smartphones,
remote labs, robots, wearable devices, cameras and other sensors) are present in the classroom and in
our daily life [2,3]. The dynamism of classrooms requires the orchestration of this complex technical
ecosystem, currently performed manually by instructors. Consequentially, novel technologies and
mechanisms should be considered during the deployment of flexible and dynamic smart classrooms.

These rich ecosystems collect large amounts of data about the learning process and context,
opening the door to better understand and improve education. However, handling such volume of
raw data also represents a complicated challenge [4]. Aware of the promises and challenges, the area
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of Learning Analytics (LA) focuses on the “measurement, collection, analysis and reporting of data
about learners and their contexts, for purposes of understanding and optimizing learning and the
environments in which it occurs” (SoLAR definition of Learning Analytics https://www.solaresearch.
org/about/what-is-learning-analytics). Within LA, over the last years, there has been a growing
context on Multimodal Learning Analytics (MMLA), which is a sub-field that makes special emphasis
on the usage of multimodal data sources [5]. There has been multiple and diverse MMLA applications,
such as to teach how to dance salsa [6] or to assess oral presentations [7]. While transforming raw data
into meaningful indicators is already daring [4], in this manuscript, we are mostly concerned with
the issue of orchestrating the different data sources and applications. A recent literature review on
MMLA architectures reveals that, due to the complexity of orchestrating the different elements of the
technical ecosystem, most of the proposals offer ad-hoc solutions [8]. Apart from limiting the chances
of reusability in different educational contexts, the effort to develop, deploy, maintain and enable
interoperability among all those ad-hoc solutions does not scale up when the number of solutions
increases [9]. Therefore, the current ad-hoc setup represents an important challenge to systematically
apply MMLA in smart classrooms [10].

Thus, a real futuristic scenario with smart classrooms, where consecutive lessons take place
(with 15–30 minutes breaks), would require a seamless and scalable reconfiguration of the sensors,
devices and virtual learning environments within the classroom not only to deliver the lesson but
also to profit from highly different MMLA solutions [10]. To address these challenges, we propose
to evolve from traditional management, predefined by the instructor in a manual fashion, towards
an automated approach able to reconfigure the classroom devices without human intervention and in
a flexible and on-demand way. The number of sensors and actuators making up smart classrooms,
as well as the possibility of managing them in a dynamic way make the scalability of the proposed
approach a critical aspect to take into account. This can be possible by deploying a Mobile Edge
Computing (MEC) architecture that combines Network Function Virtualization (NFV) technique [11]
and Software-Defined Networking (SDN) paradigm [12]. NFV will allow for separating the software
logic from the hardware of the classroom devices. It improves the flexibility and dynamism of
device management processes by enabling the deployment, dismantling and reconfiguration of the
technical ecosystem according to the current classroom needs. The SDN paradigm will help smart
classrooms with automatic and dynamic management of network communications, enabling the
Quality-of-Service (QoS) and interoperability of smart classroom devices and applications at the edge.

The objective of this paper is to present an MEC-enabled architecture that integrates SDN/NFV
to deploy, configure and control the lifecycle of MMLA applications and devices making up a smart
classroom as well as its network communications at any time and on-demand. More specifically, the
objectives of this paper are as follows:

1. Use the MMLA literature to present a simulated but realistic scenario that can surface the
limitations of the current technical approaches involved in the orchestration of complex technical
ecosystems in educational practices.

2. Propose an MMLA architecture implementing SDN/NFV principles and exemplify how this
architecture can solve some of the detected challenges to deploy, dismantle and reconfigure the
MMLA applications in a scalable way.

3. Perform several experiments to demonstrate the feasibility and performance of the proposed
architecture in terms of time required to deploy and reconfigure these applications.

The remainder of this paper is structured according to the next schema. Section 2 reviews and
analyzes the state of the art of smart learning and classrooms, MMLA, remote smart classrooms, as
well as the usage of SDN and NFV in different scenarios. Section 3 shows a case study explaining
three different scenarios and their concerns. Section 4 describes the proposed architecture and how
it can address the concerns of the aforementioned scenarios. Section 5 presents some experimental
results that demonstrate the usefulness and performance of our solution. Section 6 discusses the main
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benefits of our solution compared to the existing ones. Finally, conclusions and future work are drawn
in Section 7.

2. Related Work

2.1. Smart Learning Environments and Classrooms

In the last few decades, multiple terms have been coined with the “smart” label, often referring to
devices (such as phones or watches) or spaces (e.g., classrooms, schools, campus, or cities) that through
the utilization of the appropriate technologies and Internet of Things (IoT) services collect data from
the users and the context to better adapt to the needs of the stakeholders involved. Aligned with this
general idea, Smart Learning Environments (SLEs) are technology-enhanced learning environments
able to offer instant and adaptive support to learners based on the analyses of their individual needs
and based on the contexts in which they are situated [13]. Thus, when we think of a smart classroom,
we should not reduce it to the mere idea of a traditional classroom heavily equipped with virtual
learning environments and mobile, wearable or IoT devices.

While many aspects should be taken into consideration in a smart classroom such as the
architectural design and its ergonomy, or the pedagogical methodology [14], in this paper, we focus
on the infrastructure required to enable the “smart” features, i.e.: (1) to seamlessly reconfigure such
a complex technological infrastructure for guaranteeing the dynamicity and QoS of smart classrooms;
and (2) to collect data from users and context to feed data for the intelligent adaptation to the learning
needs at enactment time.

2.2. Architectures for Smart Learning Environments and Classrooms

As a recent literature review on smart campus technologies shows [15], paradigms and
technologies such as the IoT, virtualization, wireless network, or mobile terminals are essential
parts to be considered. There have been several attempts to orchestrate this intricate technical
ecosystem. At the beginning, many of them were ad-hoc architectures suitable for specific technologies
(e.g., interactive boards [16]), or focused on concrete problems (e.g., communication issues [17,18])
or features (e.g., remote software control [19]). Lately, authors have started broadening the scope
and flexibility of their proposals. For example, GLUEPS-AR [20,21] combines the lessons learnt
from distributed learning environments and the ideas coming from the MMLA domain. In [21],
Serrano et al. designed an architecture which gathers student actions and their contextual data
during across-spaces learning tasks to feed the adaption features. Another example is the architecture
proposed by Huang et al. [22], which not only conducts the collection, integration and analyses of
contextual data, but also enables the remote control of IoT devices and enhances the usability of the
smart classroom with additional services such as voice recognition and user control interfaces. Previous
colleagues also introduced LEARNSense framework [23], which aims to provide learning analytics
using wearable devices. However, they did not deal with scalability and deployment issues either.

These architectures often focus on supporting data processing activities of the Data Value
Chain (DVC) [24] (namely, collection and annotation, preparation, organization, integration, analysis,
visualization, and decision-making). Each of these data processing activities poses a number of
challenges linked to the problems associated with the data collection and analysis of multimodal data
sources [8], which are common in smart classrooms. However, none of these proposals details how to
(re)configure the smart classroom technical ecosystem to seamlessly switch from one LA application
to another. Thus, in this paper, we try not only to enable the DVC in a smart classroom but also to
reconfigure the technical ecosystem to cope with the requirements of different lessons happening in
a row.
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2.3. Remote Classrooms and Labs

Related to the technical orchestration challenges of smart classrooms, the virtual and remote lab
field has a long trajectory coordinating IoT services and devices. Remote smart classrooms consider
virtualization techniques and virtual machines (VM) to optimize the management of their software
and hardware resources flexibly. Some remote laboratories consider virtual labs as an essential tool to
improve the learning experience by supporting experimentation about unobserved phenomena [25].
In [26], the WebLab-Deusto project [27] used VMs to provide their students with remote smart
laboratories that do not consider WebLab-specific code. Students had access to VMs for a given
time and, once finished, a snapshot was made before restoring and preparing the VMs for new
students. In [28], the authors proposed a solution that considered virtualization techniques to adapt
the resources of remote laboratories at anytime and on-demand. Several experiments demonstrated
how the usage of computing resources was optimized to guarantee the smart labs quality of service.
In [29], the authors presented a mechanism to automatically generate, deploy and publish digitized
labs in a framework of Massively Scalable Online Laboratories (MSOL). The authors demonstrated the
suitability of the proposed mechanism by developing a communication protocol managing the lab
equipment remotely, together with a web platform enabling the management of files and publishing
digitized labs as web applications. Finally, the Smart Device Specification [30,31] provided remote labs
with interesting capabilities. This specification focused on removing dependencies between clients
and servers while enabling the description of remote lab experiments, and the selection of particular
remote lab configurations [32]. However, configurations were not flexible enough because these must
be established in advance by the lab administrator.

2.4. SDN and NFV Applied to Different Scenarios

The combination of SDN/NFV enables flexible, dynamic and on-demand management of
networking and infrastructure resources. Moreover, it facilitates disruptive and heterogeneous
scenarios such as the next generation of mobile networks (5G) [33], healthcare environments [34],
or IoT [35].

Regarding 5G mobile networks, the authors of [36] analyzed the impact of SDN/NFV in the new
vision of current and future network architectures. The authors highlighted how the combination of
SDN/NFV reduces costs while improving the network flexibility and scalability of the infrastructure.
The authors of [37] proposed a 5G architecture using NFV to support the implementation of tactile
internet. A utility optimization algorithm which enables human perception-based tactile internet
was developed to optimize the utility of 5G NFV-based components in this new scenario. In [33], the
authors proposed an architecture which integrates SDN/NFV to manage and orchestrate services in
charge of monitoring and controlling the network plane of a 5G network infrastructure in real-time
and on-demand. Another solution was presented in [38], where authors studied the network flows
migration of 5G networks and pointed out the inverse relationship between network load balancing
and reconfiguration costs. Several experiments demonstrated the previous trade-off and the usefulness
of the proposed solution. Regarding healthcare scenarios, the authors of [34] proposed an SDN/NFV
architecture providing flexible and cost-efficient deployment and control of healthcare applications and
services. In addition, the authors of [39] proposed an SDN/NFV framework to control the life-cycle
and behaviour of physical and virtual medical devices belonging to clinical environments. This work
also presented the novel concept of virtual medical device, an NFV-aware system providing dynamism
in clinical environments. In the IoT context, the authors of [35] introduced an SDN/NFV architecture
providing IoT devices with ultra-low communication latency. Another work was proposed in [40],
where authors designed an architecture to ensure key security and privacy aspects of cyber-physical
systems and IoT environments. SDN and NFV were considered to allow IoT devices and environments
to make security decisions and take dynamic reactions. It is important to mention that learning
scenarios such the proposed in this work can be improved by considering the SDN/NFV capabilities
presented in the previous works.
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In conclusion, this section has reviewed some of the most relevant solutions of heterogeneous
smart learning environments and remote classrooms, highlighting the importance of seamless
reconfiguration of smart classroom devices. The lack of solutions able to deploy, dismantle and
reconfigure the software of classroom devices has also been demonstrated to ensure the seamless
reconfiguration of devices in real-time and on-demand. Finally, we have shown the potential of SDN
and NFV in other scenarios to achieve flexible and dynamic management of computational, storage
and networking resources.

3. Description of Simulated Case Study

The related work review concluded that one of the main challenges in the area of smart classrooms
and MMLA context is an architectural one. In our attempt to understand in depth this research issue,
this section presents a simulated case study inspired by authentic uses cases extracted from the
literature. The main goal is to ascertain what the specific issues are that our proposed architecture must
address (see in next Section 4), in order to support a seamless reconfiguration of a smart classroom
where different learning activities would happen in a row. With the objective of building this case
study, we reviewed literature on MMLA applications that have been implemented during the last
few years. From these cases, we select three that were aligned with innovative learning trends and
have different objectives, devices, analytics and sensors in order to demonstrate how the architecture
self-organizes from one scenario to the following one. We also order these three cases by increasing
complexity, the first one focuses on individual students, the second one focuses on groups of students
collaborating, and the third one focuses on students collaborating in projects but also on what the
instructor is doing. Next, we describe in depth each one of the scenarios.

3.1. Intelligent Tutoring System in the Classroom

One of the main trends in education over the last decade has been the development of interactive
environments that can be slowly introduced as part of the classroom or homework activities. Two of
the most relevant tools for this purpose are Intelligent Tutoring Systems and Educational Games [41].
Most of the literature meta-reviews that have measured the effectiveness of such tools in the
classroom [41,42] have reported positive effects. However, these studies also agree on the struggle that
instructors face to effectively integrate these tools in their teaching and curriculum. One of the reasons
is not being able to know what students are doing in these virtual environments to orchestrate the
classroom activities and to intervene if necessary. Hence, the need for the development of real-time
dashboards that can provide this information to instructors [43].

The first scenario is grounded in this technological and pedagogical issue, and is strongly inspired
in the previous work of Holstein et al. [44,45]. In this work, they have co-designed a dashboard and
augmented wearable instruments to visualize real-time analytics and visualizations of what each
student is doing in the intelligent tutoring system. Next, we detail the specific details:

• Context: In this scenario, students are practicing a specific topic through the use of an intelligent
tutoring system. Each student is individually interacting with the environment with the computer.
In order to provide just-in-time help, instructors need to know how students are advancing in
this practice and what are their mistakes or misconceptions. A usual class would be around 20 to
40 students.

• Application: When students interact with the intelligent tutoring environment, they generate
events and clickstream data that can be processed to make inferences about their learning process.
Based on these data, the analytics engine generates a number of indicators of students’ current
skill and behavioral states. For example, it can show if a student is confused, needs help, has
been idle for a number of minutes or their areas of struggle, among other pieces of information.
Additionally, each computer has a webcam capturing students’ face and expression, and the
analytics engine applies an affect detection Machine Learning (ML) model to infer students’ affect
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status. Instructors receive all these info through a dashboard in real-time and can easily move
within the classroom attending students’ needs.

• Sensors and devices:

– Individual students’ devices: Students interact with the ITS by connecting to it as a web
application. The ITS provides of a series of scaffolded exercises adapted to the current level
of skill of each student. Students use the desktop PC available in the classroom.

– Individual students’ webcam: Each student has a front camera in their computer that is
capturing a video feed of their face expression continuously. This feed is used by the
analytics engine to infer the emotional state in time windows.

– Instructor device: The instructor consume the analytics via a dashboard by connecting from
its device (tablet or laptop) to the visualizer provided by the architecture.

3.2. Tabletop Task Collaboration

UNESCO has noted that the future of education should be focused on promoting transverse skills,
such as collaboration [46]. The trend has shifted from individual efforts to group work, making the
development of collaboration skills mandatory with an increasing trend of implementing collaborative
learning activities with high frequency [47]. Therefore, it is not a surprise that numerous researchers
have started to analyze collaborative learning from different perspectives. However, one of the
challenges has been to scale up the analysis of these collaboration studies when there are many groups
to assess or to provide feedback in real-time. Hence, the area of MMLA has been studying ways to
automatically provide empirical evidence that can help to support co-located collaboration through
analytics [48]. In these studies, researchers capture multimodal data from the collaboration, some
examples of data sources include video, audio, physiological signals using wearables or interaction
data with computers or shared devices [49,50].

This second scenario is grounded in this context where we present an application that generates
colocated collaboration analytics while students are interacting on a multi-touch tabletop doing
a collaborative task, which is based on previous work from Maldonado et al. [51]. The details of this
scenario are depicted next:

• Context: In this case scenario, we have students interacting with a shared device known as
interactive multi-touch tabletop, which can easily support face-to-face collaboration with multiple
students interacting at the same time. Students carry out an activity on collaborative concept
making, which is a technique where learners represent their understanding about a topic in
a graphical manner by linking concepts and preposition [52]. At the same time, students are also
conversing with each other and discussing their decisions, and this voice stream is also captured
through a microphone. The class is organized in groups of three students, and a usual class could
have around 7 to 14 groups.

• Application: The objective is to design an application that can help teachers become more aware
of the collaborative process, by making visible interactions that would otherwise be hard to
quantify or notice. The application study collaboration by considering both the verbal interactions
when students are talking to each other, as well as physical touches with the table-top [53].
More specifically, it can use metrics to identify learners that are not contributing enough to
the activity or are dominating it (both physical and verbal interaction), groups that can work
independently or those that do not understand the task. The instructor accesses all these
information though a visualization dashboard in a hand-held device.

• Sensors and devices:

– Group multi table-top: Table-top learning environments are big tactile screens that allow the
collaboration of multiple users at the same time.
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– Group overhead depth sensor: A Kinect sensor is used to track the position of each user
automatically detecting which student did each touch.

– Group microphone array: It is located above the tabletop and captures the voice of all the group
members, distinguishing the person which is speaking.

– Instructor device: The instructor consume the analytics via a dashboard by connecting from
its device (tablet or laptop) to the visualizer provided by the architecture.

3.3. Programming Project-Based Learning and Instructor Indoor Positioning

Project-based learning has become one of the main forms of instructions across contexts and the
different phases of schooling as it resembles better real-world practices and leads to deeper learning [54].
This method of instruction is very common in programming courses, where students often have to
develop a collaborative group programming project to pass the course (e.g., [55]). One of the challenges
of these collaborative projects is to assess the role and effort of each member of the group in order to
guarantee similar workload distribution, hence avoiding free riding [56]. These project-based learning
courses often have entire sessions devoted to in-class work on the projects. During these sessions, the
teacher moves from group to group solving doubts, which presents a new challenge regarding how
to equitably distribute their time across groups [57]. In this context, we can collect diverse sources of
data from the collaborative programming environments, audio from group conversations, instructors’
position and physiological signals from the students.

This third scenario combines inspiration from the following previous studies: the work of
Spikol et al., and Blikstein to apply MMLA to analyze collaborative project-based learning and
open-ended programming tasks [58,59], the ideas of Ahonen et al., to analyze biosignals during
these programming tasks [60] and finally the proposal of Martínez-Maldonado et al. to estimate the
amount of time spent by the instructions in each group [57]. Therefore, in this scenario, the application
combines an analysis of the collaborative programming actions and conversation of each group, the
physiological signals levels of each student and position of the instructor. More details about this
scenario are depicted next:

• Context: Numerous programming courses have capstone projects where students need to
implement an application that shows evidence of the different concepts acquired thorough
the course. These courses usually have some sessions allocated for students to start developing
these projects in groups while instructors move from one group to another solving doubts.
Each group interacts with a shared programming environment (e.g., [61]) to develop the project
collaboratively. The class is organized in groups of three students, and a usual class could have
around 7 to 14 groups.

• Application: In this scenario, there are two main applications. The first one is to provide analytics
regarding how the collaboration is working out and how the project is advancing. This can
include information regarding areas of struggle based on the code written and code compilations
[59], but also regarding the level of contribution to the project of each member, analysis of the
conversation and engagement levels obtained through the analysis of the physiological signals to
measure activation and engagement levels. The second one is an automatic control of how much
time the instructor has spent helping each one of the groups through indoor positioning; this way,
the instructor can balance the help that each group receives. The instructor can consult all this
information through a dashboard in order to provide just-in-time and personalized support to
each group.

• Sensors and devices:

– Individual students’ devices: Students interact with the collaborative programmings
environment by connecting to it through a web application.
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– Individual Empatica E4 wristband: Each student wears an E4 empatica wristband that captures
the heart rate, a three-axis activity through an accelerometer, and the electrodermal activity
of their skin.

– Group microphone array: It is located above each one of the groups’ tables, distinguishing the
person which is speaking.

– Group positioning sensor: It is located in each one of the groups’ tables to detect the center
position of each group.

– Instructor positioning badge: It is carried by the instructor when moving around the
class. It implements Pozyx (https://www.pozyx.io/) technology which is an ultra wide
band solution that provides accurate positioning and motion information with sub-meter
accuracy (10 cm).

– Instructor device: The instructor consumes the analytics via a dashboard by connecting from
its device (tablet or laptop) to the visualizer provided by the architecture.

3.4. Requirements of the Previous Scenarios

The case study with the three consecutive scenarios represents an example of how smart
classrooms and MMLA solutions could look in the future. To reach our goal of supporting the seamless
reconfiguration and data collection required to enable the smart adaptation, we have identified four
main requirements emerging from our simulated case study:

Requirement 1—Within-scenario flexibility for instructor-configured data collection,
analytics, visualizations, and recommendations: Aligned with the challenges reported in the
literature [8], the MMLA solutions implemented in the aforementioned scenarios are ad-hoc solutions
that enable the data gathering and analysis to later feed the visualizations and recommendations for
instructors and students. The three use cases that we described have different learning environments,
devices, data sources or analytics pipelines that have been configured to match the necessities of each
use case. Therefore, to be able to scale up the number of MMLA solutions used in a single classroom
and scenario, it is necessary to provide a scalable architecture compatible with the different MMLA
applications [9,10] by abstracting these functionalities in scalable and interoperable modules that can
be automatically re-configured for each MMLA application.

Requirement 2—Between-scenario flexibility for automatic deployment of the MMLA
solutions: The kind of equipment, devices, setup and sensors necessary to perform these applications
makes smart classrooms expensive to have. Therefore, we would expect that, in the future, these
classrooms are fully booked, perhaps having a short time of 15–30 minutes in-between sessions.
In our case study, we presented three consecutive use cases to illustrate this issue, but this might be
a conservative estimate. The current setup makes it very challenging to seamlessly and automatically
re-configure the technical ecosystem and to also enable the data collection and analysis in short periods
of time. In our case study without a proper architecture, each teacher would be in charge to deal
with the technological complexity of the MMLA application in each class, which in reality is not
a feasible approach. This raises the necessity to have a seamless transitions between the scenarios of
our simulated case study.

Requirement 3—Seamless privacy and authentication configurations: The privacy of users,
and of students in this case scenario, has been one of the topics on the spotlight during the last
years [62]. The regulations have agreed that we need to provide control to the users so that they
can specify how their data can be used. Therefore, even though these MMLA solutions seek to help
students in their learning process, students and instructors should still have the right to opt-in or -out
so that their data are not collected and/or used. In the case scenario, each application would need to
manage this privacy and authentication issues separately, which is sub-optimal. Therefore, we need to
provide a centralized system where students can configure their privacy and authentication options to
apply across all the smart classroom applications, and we also need to easily identify students across
applications and devices so that we can properly process their data.

https://www.pozyx.io/
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Requirement 4—Easy communication with external data sources: Thanks to the institutional
data and the ICT adoption in our daily routines, there can be numerous data sources (both formal
and informal) that can hold valuable information to understand students’ context and knowledge.
Some examples might include the classical LMSs in formal learning institutions, other online
courses, academic records or background information. In the case study, each application would
have developed their own interface to interact with these external data sources. Thus, instead
of implementing ad-hoc solutions to benefit from those external data sources, there is a need for
generating services and APIs that can be used across applications.

4. Architecture

This section describes our MEC/SDN-oriented architecture that satisfies the aforementioned
requirements, and how it integrates different components to reconfigure and manage the learning
applications running on top of classroom devices automatically, on-demand and in real-time. Figure 1
shows the levels, components and communications of the proposed architecture. The main elements,
following a top-down approach, are the next ones:

MEC Host Level 
Management

MEC Platform 
Manager

Virtualisation 
Infrastructure 
Manger (VIM)

MEC Host

5G
Network

WiFi
Network

Other
Networks

SDN
Controller

MEC System Level Management

MEC Platform

MEC 
App 1

Virtualization Infrastructure

Network
Level

Operations Support System

Orchestrator

Auth ServMEC 
Services

Decision

Acquisition

MEC 
App 2

MEC 
App n

Learning Record Store 

Analytics Engine

Recommender Visualizer

Learning Analytics Platform

MOOCMOOC MOOCLMS
External

Data Sources
MOOCAcademic Records

Figure 1. Architecture oriented to the Mobile Edge Computing (MEC) paradigm.

• External Data Sources. This level contains different external databases and tools such as data from
the Academic Records, Learning Management System (LMS) or Massive Open Online Courses
(MOOC) that can feed our architecture with relevant students’ data.

• Learning Analytics Platform. It hosts the components focused on analysing data provided by
external sources and generated during the realization of learning activities.

• MEC System Level Management. This level is focused on (1) processing requests from instructors to
reconfigure heterogeneous classroom devices in real-time and on-demand, (2) making decision
and orchestrating them to configure learning applications running on top of classroom devices,
and (3) sensing classroom devices to detect misconfigurations or problems.

• MEC Host. Heterogeneous classroom devices, also known as MEC Hosts, such as electronic
blackboards, tablets, personal computers, servers, or Raspberry Pi that need to be reconfigured
according to the current learning course or subject.
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• MEC Host Level Management. Level hosting the different managers able to control the life-cycle of
the Virtualization infrastructure, MEC Platform, and MEC Apps running on the MEC Hosts.

• Network Level. This level contains the network infrastructure enabling the communication of MEC
Hosts and the rest of the levels making up the architecture.

In the following subsections, we explain in detail the components and main levels of our platform.

4.1. Learning Analytics Platform

The Learning Analytics Platform has the different modules and components that are necessary
to implement learning analytics applications that have as a final objective to improve the learning
experience and outcomes of students. With that goal in mind, the platform hosts different components
able to acquire, process, analyze, recommend and visualize relevant data generated during the
interaction of students with learning applications. Among the most relevant components, we highlight
the Learning Record Store (LRS), which acquires and stores students’ interaction registers generated by
learning applications. Those registers are sent to the Analytics Engine component to analyze them by
using ML and statistical techniques. According to the registers, the outputs of the Analytics Engine and
some trained models, the Recommender component provides students and instructors with suggestions
to improve the learning experience. Finally, the Visualizer component exposes a graphical interface that
allows students and instructors to interact with registers, data and outputs of the learning platform.

4.2. MEC System Level Management

The MEC System Level Management deals with the management of the classroom devices and
the behaviour of the learning applications running on top. In this context, the Operation Support
System (OSS) is focused on the the logic of the architecture. This element provides instructors with an
interface to define the rules that enable the reconfiguration of the learning applications and software
running on top of the heterogeneous devices belonging to a classroom. These rules will be provided
to the Decision component to identify particular actions to be taken. Once a decision is made, the
Orchestrator receives the notification and interacts with the managers and controllers of the lower levels
to configure the network, the classroom devices and their learning applications. Finally, the Acquisition
component senses data generated by the classroom devices and their applications and services (not
only learning applications) to detect misconfigurations or problems. When one problem is detected,
the Decision and Orchestrator modules come into play to decide, schedule, and spread the required
actions.

4.3. MEC Host Level

The MEC Host Level is composed of two planes, the control and data planes.
The control plane is called MEC Host Level Management and it is in charge of deploying, controlling

and dismantling learning applications, instantiated as MEC Apps that run on top of heterogeneous
classroom devices (MEC Hosts). The MEC Host level management contains two managers: the MEC
Platform Manager and the Virtualization Infrastructure manager (VIM). The MEC Platform Manager
controls the whole life-cycle of MEC Apps, and the VIM manages the computation, storage and
networking virtual and physical resources of the Virtualization Infrastructure.

In the data plane, we find the MEC Hosts, which are classroom devices providing computational,
storage, and networking resources to execute learning applications. Each MEC Host contains
a Virtualization Infrastructure, a MEC Platform and one or more MEC Apps. MEC Apps can be deployed
as learning applications, components of the Learning Analytics Platform (commented on in Section 4.1)
and other applications like, for example, those oriented to improve the learning courses security and
privacy). MEC Apps can be instantiated in Virtual Machines (VM) or containers running on top of
the virtual infrastructure. The virtualization infrastructure consumes the hardware of heterogeneous
learning devices such as computers, digital blackboards, or cameras and provides computational,
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storage and networking virtual resources. Finally, the MEC platform provides essential and generic
MEC Services needed to run MEC Apps. These services can be specific for particular applications or
generic enough to be shared among several MEC Apss. Examples of MEC Services can range from
communication protocols to access control mechanisms or cryptographic material.

4.4. Network Level

The Network Level contains two types of elements: heterogeneous Networks and the Network
manager. The networks represent the hardware and software networking resources needed to connect
MEC Hosts and their MEC Apps. The Network Manager allocates the SDN Controller, which has the
global view of the network status as well as the logic of the network to control the data plane where
heterogeneous networks are located.

4.5. Solutions Provided by our Architecture to the Previous Requirements

Solution to Requirement 1—Within-scenario flexibility for instructor-configured data
collection, analytics, visualizations and recommendations: Easy and flexible reconfigurations of
the instructors’ and learners’ applications, such as the one needed in the first scenario, are enabled by
our solution. Figure 2 shows the interaction between the components of our architecture to reconfigure
the storage and processing capabilities of the instructor host. For clarity’s sake, we show how the
architecture reconfigures two MEC Apps running on top of an MEC Host. However, this functionality
could be extended to several MEC Hosts and applications. The 1st step of Figure 2 shows when
the decision of reconfiguring the instructor host is made by the Decision component. After that,
the Orchestrator provides the MEC Platform Manager with the MEC Host and the reconfiguration
details of the new storage and processing capabilities. Once received, the MEC Platform Manager
interacts with the instructor host to access the storage and processing MEC Apps and reconfigure
them (steps from 3 to 6). When the reconfigurations have finished, the action is confirmed to the
Orchestrator (step 7).

Orchestrator MEC Platform 
Manager Instructor host

Storage Processing
Decision

new instructor host 
configuration

reconfigure 
instructor host with 
new storage and 

processing

status: ok

status: ok

status: ok

reconfigure storage

reconfigure processing

1

2

7

3

4

6

5

Figure 2. Architecture reconfiguring two MEC Apps running on top of an MEC Host.

Solution to Requirement 2—Between-scenario flexibility for automatic deployment of the
MMLA solutions: Aligned with the capabilities shown in the previous issue and focused on
addressing this one, the proposed architecture deploys, configures and dismantles MEC Hosts and
their applications in real-time and on-demand. Following the previous example, Figure 3 shows how
the components of our architecture dismantle the instructor host when a given application is finished,
and deploy new ones with different capabilities for the next class. In the 1st step of Figure 3, the
Decision component interacts with the Orchestrator to notify the necessity of changing the instructor
host. After that, the Orchestrator provides the VI Manager with the required info to dismantle the
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MEC Host (step 2). Once the notification is received, the VI Manager dismantles the host and confirms
the Orchestrator the action (steps 3–5). When the old instructor host has been dismantled, the next
step is to deploy a new MEC instructor host with more hardware resources (processor and graphics).
This process is shown from 6 to 9 in Figure 3. At this stage, our architecture has already deployed a new
MEC instructor host with enough hardware resources to meet the requirements of the next learning
analytics application and the next step is to deploy a new MEC App with visualization tools and
capabilities. For that, the MEC Platform Manager is the component in charge of deploying, configuring
and confirming the new MEC App (steps from 10 to 13). Finally, the Orchestrator communicates with
the SDN Controller to include a new rule in the switch flow table, and route the network packets sent
and received by the new instructor host and its applications (step 14).

Orchestrator VI Manager

Storage
Processing

Decision

new instructor 
host with 

visualization 
capabilities

status: ok

1
2

MEC Platform 
Manager SDN Controller

Instructor host

dismantle instructor 
host dismantle

status:ok

create

status:ok

deploy MEC 
visualization app

Visualization
status:ok

deploy

status:ok

create new 
instructor host

status:ok

configure switch flow table 

status: ok

3

4
5

6 7

89

11

1213

14

15

10

Figure 3. Architecture dismantling an old MEC Host, and deploying a new MEC Host and MEC App.

Solution to Requirement 3—Seamless privacy and authentication configurations: Our
architecture is able to deploy MEC Apps, providing students with authentication and authorization
capabilities, in real-time and on-demand. On the one hand, depending on the learning course security
requirements, the architecture will deploy and configure an MEC App providing several authentication
mechanisms with different levels of security. On the other hand, the architecture will deploy another
MEC App allowing students to define their privacy preferences by defining user-friendly policies.
In this context, students will determine what pieces of sensitive data can be shared, who or what
learning tools can process the sensitive data, how long data can be processed or stored, or what can be
done with the data, among others. Once defined the policies, they will be sent to the components of
the Learning Analytics Platform to ensure that they are considered during the data management and
storage processes.

Solution to Requirement 4—Easy communication with external data sources: As can be seen
on top of Figure 1, the design of our architecture considers external data sources such as MOOC, LMS,
or academic datasets feeding the Learning Analytics Platform with additional data that will be critical
for the data analysis processes performed by its components.
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5. Experimentation Results

A key aspect of our proposal is how the architecture deploys and configures the learning
ecosystem automatically for each scenario, which addresses the aforementioned Requirements 1
and 2. We consider these two requirements as the key ones that are necessary to bring scalability and
interoperability to smart classrooms and MMLA applications, and thus we focus our experimentation
in this section on those two aspects. The deployment process is dealt by the Orchestrator that must
consider the features of each classroom device and its performance with different MEC Apps. In this
section, we show experimental results regarding computational performance and efficiency of typical
classroom devices with practical learning tools.

With a model of deploying MEC Apps based on containers, we investigate experiments about three
types of learning tools: high-intensive computing, medium-intensive computing and high-intensive
data consuming. The high-intensive computing MEC App is a face-recognition that detects all the
faces and face encoding in each frame of a video source. This application is a Python program based
on dlib library using a Histogram of Oriented Gradients (HOG) face detector. The medium-intensive
computing MEC App is a feature extractor for Automatic Speaker Recognition (ASR). This application
is also a Python program based on the Mel-Frequency Cepstral Coefficients (MFCC) that analyzes
an audio source periodically each second. In addition, the high-intensive data consuming MEC App
is a computational physics simulation that plots a 3D surface. This application is a Python program
based on Matplotlib library for creating animated visualizations.

5.1. Testing Environment

We deployed a testing environment composed of three MEC Hosts with different hardware
resources, which are representative of a real smart classroom; these are a server, a desktop PC and
a laptop. These devices can be used in the different scenarios presented in Section 3. The server was
an Intel machine with dodeca-core (12 cores) 3.50 GHz CPU and 32 GB DDR4 RAM, the PC was an
Intel machine with octa-core (8 cores) 3.40 GHz CPU and 16 GB DDR4 RAM, and the laptop was an
Intel Celeron machine with dual-core 1.10 GHz CPU and 4 GB DDR4 RAM. In particular, laptops have
similar computational capabilities to tablets and mini-PCs, so our experimental results with laptops
are comparable to tablets and mini-PCs.

For each device, we set up a realistic evaluation environment with the typical services and
graphical interface used to reduce the overhead. The operating system of all hosts was Ubuntu 64-bit
18.0.4, and the containers were deployed by the latest version (19.03.6) of Docker Engine. No more
additional software components were needed to deploy the learning tools on our testing environment.
Each learning tool was allocated within a unique Docker container providing a single learning task.

Our testbeds evaluated the performance and efficiency of our solution by increasing the number
of containers on each type of MEC Host. This allows for observing the performance variance across
different scenarios according to their capabilities. We expect that changing between scenarios would
have an impact in the performance, e.g., the learning device installed in a classroom work table would
require much more learning tools in a Tabletop Task Collaboration scenario than a Programming
Project-based Learning scenario. Another possibility is that there could be changes in the number of
students taking each class, hence affecting the computation requirements. Therefore, the performance
for each configuration must be well-known by the Orchestrator to properly reconfigure the learning
devices in each class.

5.2. Docker Container with High-Intensive Computing Application

There are several learning scenarios that can require a face detection tool to identify students or
infer affect states. As shown in Section 3 for an Intelligent Tutoring System, an MEC Host with a camera
capturing a video feed of student face expression can be used to infer the affect (e.g., surprise, neutral,
confusion and angry) and identify when a student needs help. We used dlib library to implement
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a HOG face detection MEC App and created a Docker container that provides this app in our testing
environment. The HOG is one of the most reliable and applied algorithms for person identification,
but also an intensive computational task. Therefore, it is essential to properly manage the available
computing resources in the learning device that can be dedicated to the execution of this learning tool.

In order to evaluate the performance and efficiency of the Face Recognition application in Docker
containers, our testbed used a H.264 video source with 640 × 360 image size and applied the HOG
algorithm in each video frame. We used the analyzed frames per second (FPS) as performance
evaluation index to assess how fast the HOG algorithm is. If a configuration has higher FPS value, it
has higher video quality and can produce smoother video. Figure 4 shows the experimental results
obtained when increasing the number of containers for each type of learning device. The left graph
depicts the maximum analyzed FPS for each configuration and the right graph shows how many CPU
cores are overloaded.

(a) Face detection and encoding speed. (b) CPU usage per container.
Figure 4. Performance results for Face Recognition application in Docker containers.

As it can be seen in Figure 4, the maximum speed achieved was above 6 FPS for configurations
with up to six containers in server and up to four containers in PC, whereas the throughput in the
laptop was much lower with less than 3 FPS. In addition, the server was absolutely overloaded with
12 containers, the PC with eight containers and the laptop with two containers. Therefore, we observe
that each container consumed approximately one CPU core. These experimental results imply that
a face detection tool can be provided in different configurations e.g., a PC with eight cameras could
serve for a work table shared by eight students or a laptop for one single student. Note that the server
achieved the highest computation performance, and this performance could further improve if it
included a graphics card to implement the HOG algorithm.

5.3. Docker Container with Medium Computing Application

Identifying students via their voice in a microphone can be useful for several learning scenarios,
as shown in our use case related to project-based learning (see Section 3). An MEC Host with
a microphone capturing the meeting audio can identify students, perform speech-to-text transcription,
calculate speaker metrics (e.g., speaking time or counters) and infer the emotional state (e.g., angry,
boring or excited).

We implemented an MEC App based on MFCC to recognize persons and created a Docker
container with this tool to carry out our experiments. The MFCC are widely used in automatic speech
and speaker recognition and allow transforming the audio source into a sequence of feature vectors
that characterize voice signals. Our MEC App extracted feature vectors in one second window in
order to apply a real-time student recognition. The process to calculate MFCCs consisted in framing
the signal in short windows to later apply specific mathematical operations that convey a medium
computing task.
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In order to evaluate the performance and efficiency of the ASR application in Docker containers,
our testbed used an audio signal stored and processed each second using MFCC with a length of the
analysis window of 25 ms and a step between successive windows of 10 ms. In this case, we used the
processing time as the performance evaluation index because this indicator shows how fast the MFCC
algorithm is. If a configuration has slower processing time, it can process more audio sources and
serve more users. Figure 5 shows the experimental results obtained when increasing the number of
containers for each type of MEC Host. The left graph depicts the processing time to analyze the audio
signal each second and the right graph shows how many CPU cores are used in the processing.

(a) Feature extractor speed. (b) CPU usage per container.
Figure 5. Performance results for Automatic Speaker Recognition application in Docker containers.

The audio feature extractor is a relatively low computationally expensive task that is
well-supported in server, PC and even laptop. As shown in Figure 5, the processing time was
always below 100 ms for our three learning devices and below 30 ms for server and PC. However,
the CPU overload was relevant for PC when the number of containers doubles its number of cores.
In addition, the laptop was stuck when the number of containers was greater than 10, whereas the
server was not overloaded with up to 20 containers. These experimental results show that an ASR tool
can be easily provided in our use cases, e.g., a laptop/tablet with microphone could serve a 6-student
work group or a server with 20 students simultaneously.

5.4. Docker Container with a High-Data Consuming Application

The interactive simulation-based learning can be useful in multiple scenarios, for example using
an ITS in the classroom, as shown in Section 3. When students interact with the simulation, they
generate events and clickstream data that can be stored and processed to calculate usage metrics
(e.g., idle times or event counters) and even infer about their learning experience (e.g., difficulty
or simplicity).

There are several types of interactive simulations which could be used in a classroom. Physics
simulations are widely used to improve the learning process in science and engineering education.
We implemented a Matplotlib MEC App to build an animated physics simulation that shows a wave
motion. In particular, the physics simulation used a 1.5 GB array to plot a 3D surface animated.
The size of plotting array implied that the simulation carried out a high data consuming task for
learning devices or MEC Hosts.

In order to experiment our physics simulation in Docker containers, our testbed updated the
plotting constantly in order to evaluate the performance in each learning device. We used the changes
per second (CPS) of the simulation as the performance evaluation index because this indicator shows
how fast the simulation is running. If a configuration has higher CPS value, it has higher simulation
quality and can produce more fluent simulations.. Figure 6 shows the experimental results obtained
when increasing the number of containers for each type of learning device. The left graph depicts the
maximum CPS for each configuration, and the right graph shows the percentage of RAM memory used.
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Given the results shown in Figure 6 and that our physics simulation required 4 CPS at least
to show a fluent animation, a laptop served only one container with our simulation. However, the
server and PC could achieve 20 and 14 containers, respectively. Moreover, the memory was full and
additional containers were rejected when the server launched more than 20 containers, the PC 14
containers, and the laptop 2 containers. These experimental results show that a high-data consuming
simulation can be used in different configurations, e.g., a laptop/tablet could be used for a single
student and a server to up to 20 students in the classroom.

(a) Simulation speed. (b) RAM memory usage per container.
Figure 6. Performance results for Computational Physics simulation in Docker containers.

6. Discussion

Among the different aspects to be taken into consideration in a smart classroom [14], the
proposed architecture focuses on orchestrating the complex technical ecosystem and enabling its
“smart” features. The architecture has been designed bearing the following main requirements in mind:
within-scenario and between-scenario flexibility, seamless privacy and authentication configurations,
and easy communication with external data sources.

The experimental results regarding the performance and scalability of our architecture show how
heterogeneous classroom devices can be managed in an automatic and efficient way to host different
amounts and types of learning tools and applications. Concretely, we demonstrated the scalability of
our architecture when an increasing number of Dockers, with diverse computational requirements, is
deployed over three widely used hardware configurations such as laptops, personal computers and
servers. However, no direct comparison of the obtained results with those reported in the literature
was possible since they highly depend on the hardware and software configuration. Furthermore, most
MMLA studies evaluate their results based on educational outcomes but not on technical performance.

The automatic and flexible management of the proposed architecture has been motivated through
the case study presented in this paper, which illustrates the limitations of current solutions and how
our proposal offers a seamless switch between three different learning scenarios happening in the
same smart classroom. While existing architectures for smart classrooms often involve ad-hoc digital
devices and tools that can be used in specific ways [15,22], in our proposal, the different modules of the
ecosystem can be orchestrated for multiple purposes in scalable and interoperable ways. Moreover, the
human intervention required to adapt and reconfigure the transition between heterogeneous learning
lessons is significantly reduced and can be automatized.

The presented architecture could be of great value also for the remote lab community.
While virtualization techniques had been already explored [27–29], this architecture could increase the
flexibility of remote labs, by supporting the configuration and deployment of remote experiments [32].
Moreover, it supports the collection of multimodal data (coming both from hardware and software)
necessary to support the smart adaptation to the learning process.

Regarding the instant and adaptive support expected from smart classrooms [13], our proposal
could become the base upon which other architectures could build, uncoupling the multimodal
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challenges of the DVC [4,63]. More concretely, our contribution helps to address the lower level
technical requirements of the DVC, and more conceptual architectures (e.g., [21,22,63]) could build on
top of it. Thus, our proposal contributes to diminishing the need for ad-hoc MMLA solutions often due
to the technical constrains to the ecosystem [8]. As a consequence, relying on a lower level architecture
will open the door to multiple analysis and adaptability schemes in smart classrooms, addressing the
reusability and interoperability problems among MMLA solutions [9,10].

The integration of SDN/NFV in our architecture allows instructors to reduce their workload
avoiding the manual configuration of classroom devices according to the topic and purpose of each
subject. It also reduces the complexity of the smart classrooms management as well as optimizes the
usage of classrooms devices. In a nutshell, smart classrooms equipped with our architecture will be
able to reconfigure and optimize the learning applications of their devices ant their communications
according to the current subject topic and number of students. It will be done in real-time and
on-demand. In contrast, as it has been demonstrated in Section 2, existing solutions using virtualization
techniques [25,26] are not able to reconfigure the whole remote lab in a flexible way. They just consider
predefined VMs implementing particular learning applications that are instantiated and dismantled.
It means that they miss critical aspects such as the flexible management of communications, essential
to guarantee QoS issues when the number of students increases, and the optimization of hardware
resources of learning devices such as CPU, memory and storage.

It is important to note that one of the main limitations of the proposed architecture is the
complexity of its deployment. The usage of resource-constrained devices such as digital boards or
cameras makes very complex their management through current virtualization techniques. Fortunately,
this issue is limited when other devices such as tablets and personal computers are considered in smart
classrooms. Additionally, the architecture is still to be tested in a real scenario, which is part of the
future work. Moreover, we argue that the architecture represents an improvement with respect to
other studies. However, we cannot present a direct comparison in terms of efficiency because most
MMLA studies do not report on the performance of the architectures from the technical point of view.
Finally, we still have not tackled the challenge of how instructors will be able to interact with this
architecture through a user-friendly authoring tool.

7. Conclusions and Future Directions

Smart classrooms require a dynamic and flexible orchestration of their complex ecosystem,
currently performed manually by instructors that use ad-hoc learning applications. With that goal
in mind, this paper the following three key research problems: (1) the limitations of current learning
solutions in terms of flexible and scalable management of devices belonging to simulated and realistic
learning scenarios; (2) the suitability of technologies and their integration in an architecture able to
provide the level of flexibility and dynamicity required by current learning environments; and (3)
the scalability and performance of the architectures. With challenges in mind, this paper proposes
an MEC-enabled architecture that considers SDN/NFV to reconfigure the software and hardware
resources of classroom devices in real-time and on-demand. A case study inspired by authentic learning
analytics applications extracted from the literature has been proposed to highlight the limitation of
the existing solution and demonstrate the added value of our architecture. The experimental results
demonstrate acceptable computational performance and efficiency when typical classroom devices
such as servers, personal computers or laptops implementing practical learning tools are deployed and
reconfigured. Specifically, we investigated experiments with different MEC Apps such as face detector,
ASR and physics simulation, each one with different computational requirements. The results point
out the potential of our architecture to manage heterogeneous classroom devices in an automatic and
efficient way.

As future work, we plan to implement and deploy the proposed architecture in a realistic smart
classroom scenario to demonstrate its usefulness with real students. In this sense, we will integrate
our architecture in existing platforms able to deploy, dismantle and control the life-cycle of VMs and
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containers such as OpenStack, as well as control the network infrastructure and the communications
of the smart classroom by using OpenDaylight as SDN Controller.
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